PROTOPLANETARY DISKS AND THE IRS 'LO-RES' LEGACY

Melissa K. McClure, ESO Fellow, Garching

Science Enabled by Novel Infrared Instrumentation, 26 June 2017, Cornell University

Credit: NASA/FUSE/Lynette Cook

SPITZER SPACE TELESCOPE INFRARED SPECTROGRAPH (IRS)

- Last NASA "Great Observatory"
- Cryo mission 2003-2009
- IRS (PI Houck)
 - 5-40µm, low-res (SL, LL)
 - 9-35µm, hi-res (SH, LH)
- Protoplanetary disks:
 - GTO: IRS_Disks (PID 2)
 - Legacy program: c2d
 - many GO programs...

IRS_Disks team leaders, 2003?

OUTLINE

Theory/motivation

Dust settling

Grain growth

Planet formation

Organics

Star formation Overview

DISK EVOLUTION

- primordial (protoplanetary) disk stage lasts up to 10 Myr
- dominated by viscous evolution, but other physical processes affecting disks during their lifetime include:
 - dust settling
 - grain growth
 - planet(esimal) formation
 - appearance of building blocks of life

Spitzer IRS provided first evidence for what these processes look like in real life (vs theory).

DUST GROWTH & SETTLING

Dust spatial distribution and grain size evolves over time.

Well-mixed dust

Grain growth & settling

 Large grains concentrate at midplane with dust/gas >> 0.01: Important step towards planetary core formation!
 Population of small grains with dust/gas << 0.01

How does grain segregation affect the disk structure?

Dust settling sets T(Z,R)

Small dust grains heat disk upper layers, causing disk to flare (Kenyon & Hartmann 1987).

Changes in T(z,R) produce measureable mid-IR characteristics.

Predicted settling signatures

- less opacity \rightarrow cooler upper layer \rightarrow lower continuum flux >30µm
- less optically thin small grain dust mass → smaller 10µm feature

- Spitzer IRS spectra show range of continuum levels
- comparison of model settling indicator for disks in many regions

D'Alessio et al. 1998, 2006; Furlan et al. 2006, 2011.

Slope between continuum bands indicates degree of dust settling.

Taurus and Ophiuchus have same distribution of slopes: ε=0.01-0.001. Disks settle in <1Myr.

 λF_{λ} (erg s⁻¹ cm⁻²)

Grain growth in disks

Two-temperature, many species, fits:

(Sargent et al. 2009, Olofsson et al. 2010, Koch et al. 2017)

- warm (~700K) & cool (~125K) blackbodies
 - warm & cool optically thin dust of large/ small amorphous silicates and 3 crystalline silicate species.
- more large warm grains consistent with expectation of faster timescales in inner disk.
- little variation as a function of age.

But is this the whole picture?

EVIDENCE FOR FRAGMENTATION?

Self-consistent disk + silicate sublimation rim models.

- Larger Mdot, hotter disk, more fragmentation
- cooler disk, more grain growth

Small grains in $10\mu m$ feature may indicate increased settling and "hidden" grain growth.

DUST MINERALOGY - PLANETESIMAL FORMATION?

DK Tau x2

F04147+2822

GN Tau x2

V955 Tau x0.75

Fo.

30

Si.

20

- Two-temperature fits find cool forsterite, silica.
- Silica fraction increases with disk age.

DUST MINERALOGY - PROTO-KUIPER BELT?

Self-consistent disk models to simulate crystalline annuli at different radii.

- Best fit is crystalline ring between 20-50 AU
- Too far out for innate temperature structure or shock formation (Harker & Desch 2002); leaves planetesimal collisions!

Is this scenario common?

SOLAR SYSTEM ANALOG

Pallasite meteorite family: collisions between differentiated planetesimals.

Forsterite inclusions (green) vaporized crust

> Iron-nickel matrix (silver) molten core

Have mature planets formed in disks as well?

GIANT PLANET FORMATION

Core accretion:

- planetesimal sticking/growth
- slow: ~ few Myr to form
 giant planets (Σ dependent)
- works in inner disk, produces cold planet

Gravitational instability:

- collapse of unstable region in outer disk
- shorter timescale
- hotter planet

[g cm⁻²]

SIGNS OF GIANT PLANET FORMATION?

Transition/pre-transition disks:

- Mid-IR continuum flux deficit, relative to Taurus median
- strong I0µm silicate feature
- redder I3-31µm slope than settling models explain

46 AU gap carved by planets?

Confirmation of giant planets in LKCA 15!

- ALMA gap ~50 AU (similar to SED)
- planet candidates imaged at Ks, L0, and Hα (Kraus & Ireland 2011, Sallum et al. 2015)
- large gaps may require multiple
 IMjup planets to open

Transition disks populations: Timescale for giant planet formation

TDs disks relatively common at range of ages

How early do they occur?

Transition disks populations: Timescale for giant planet formation

Transition disks stage represents ~10-25% of disks. It begins early, continues at similar rate over disk lifetime. Combined with large gap sizes, suggests gravitational instability?

CRITICAL PLANET-FORMING INGREDIENTS IN DISKS: ICES

- Presence of many ices in edge-on disks, including more complex organics like methanol
- Mixing of complex organics in CO₂ ice feature
- Processing of 6-8µm complex

Pontopiddan et al. (2005)

JWST will be able to disentangle ice blends to trace ice evolution from clouds to disks (GTO, ERS proposals). HIRMES & OST will be able to detect thermal ice emission seen with Herschel (McClure et al. 2015).

CRITICAL PLANET-FORMING INGREDIENTS IN DISKS: GAS PHASE ORGANICS AND WATER

- Spitzer hi-res: extensive H2O & OH emission line forest, select organics (blended)
- T~300-1000 K (inner 4 AU)
- Strength increases with settling (less dust extinction)

Carr & Najita (2008); Pontopiddan et al. (2010)

CRITICAL PLANET-FORMING INGREDIENTS IN DISKS: SOLIDS LOCKED IN THE OUTER DISK?

- F_{HCN}/F_{H2O} (inner disk) correlates with sub-mm flux (outer disk)
- Volatile locking could cause C/O variation, explaining some of the spread in flux ratios
- evidence for locking in complex organic signatures...

CRITICAL PLANET-FORMING INGREDIENTS IN DISKS: COMPLEX ORGANICS

- Spitzer low-res: hot H₂O emission line and more complex organics formaldehyde (H₂CO) and formic acid (HCOOH)
- T~I200 K (inner 0.2 AU) for water, T~500-I000 K.
- Formaldehyde produced by CO ice hydrogenation: consistent with CO depletion mechanism proposed to explain low CO/H2 ratio for TW Hya (ALMA; Schwarz et al. 2016)

Really need JWST to disentangle bands.

SUMMARY

Spitzer IRS showed us that protoplanetary disks:

 \checkmark can settle dust to the midplane by 0.7 Myr

 \checkmark experience grain growth even in upper layers, but 10µm feature is tricky to interpret due to silicate rim contribution

 \checkmark show evidence for high velocity planetesimal collisions in a substantial population

 \checkmark have giant planets already by 0.7 Myr.

 \checkmark display strong lines of water and organics that are building blocks for the more complex molecules necessary for life.

Look for future progress with JWST, HIRMES, and OST.