Joseph Harrington

Planetary Sciences Group
University of Central Florida Orlando, Florida

UCF Planetary Sciences

- University of Central Florida - ORLANDO!
- 2nd-largest US undergraduate univ., 64,000+, growing
- PhD in Physics, Planetary Sciences Track, ~15 grads
- 7 Planetary Science Professors: (next hire: a space instrumentalist!)
- Humberto Campins (comets, OSIRIS-REX)
- Daniel Britt (surfaces, meteorites)
- Yanga Fernandez (comets)
- Joseph Harrington (exoplanets \& atmospheres)
- Joshua Colwell (rings, ice, dust, Cassini)
- Adrienne Dove (dusty plasmas)
- Christopher Bennett (planetary surfaces)
- Florida Space Institute (self-funded, soft-money):
- Phillip Metzger (ISRU), Todd Bradley (Mercury, Cassini)
- Thomas Kehoe (orbits), Gal Sarid (orbits)
- Noemi Pinilla-Alonso (comets), Julie Brisset (formation)

Outline

- Spitzer Exoplanet Milestones
- ...and Millstones
- Removing Systematics
- Lessons
- Conclusions

Spitzer Reality for Exoplanets

- Transits ~1\% for Jupiters
- Eclipses ~0.01-0.25\%, far below 1\% design
- Most favorable planets discovered too late
- Spectrometer, 16, $24 \mu \mathrm{~m}$ barely used
- Mirror small, typical theoretical S/N<~10/eclipse
- Systematics serious:
- Baseline unstable at $5.8+\mu \mathrm{m}$ ("ramp")
- Intrapixel sensitivity variation >1\% for 3.6, 4.5 $\mu \mathrm{m}$
- Underresolved pixels make photometry difficult

Spitzer Exoplanet Firsts (Methods)

- Eclipses
- Photometric (Deming+05, Charbonneau+05)
- Spectroscopic (Richardson+08, Grillmair+08, Todorov+14)
- Phase curves (Harrington+06, Knutson+08)
- Broadband eclipse and transit "spectra" (Knutson+08, Charbonneau+08)
- Dayside mapping (de Wit+12, Majeau+12)
- Habitable-zone M-dwarf planets (Gillon+17)

First Direct Photon Detections

- HD 209458 b, MIPS24, Deming, Seager, Richardson, Harrington (2005, Nature)
- $F_{24 \mu \mathrm{~m}}=55 \pm 10 \mu \mathrm{Jy}, F_{\mathrm{p}} / F_{*}=0.0026 \pm 0.00046, T_{\mathrm{b}}=1130 \pm 150 \mathrm{~K}$
- Charbonneau et al. (2005, ApJ) submitted TrES-1 the same day!
- $F_{\mathrm{p}} / F_{\mathrm{z}}: 4.5 \mu \mathrm{~m}: 0.00066 \pm 0.00013,8 \mu \mathrm{~m}: 0.00225 \pm 0.00036, T_{\mathrm{b}}=1060 \pm 50 \mathrm{~K}$

S/N Champ: HD 189733 b

- K1-K2 star (small, cool), close (19.3 pc), $V=7.67$
- $R_{p}=1.26 R_{\text {Jup }}$ (bigish for a hot Jupiter)

| | | |
| :---: | :---: | :---: | :---: | :---: |

- Many times higher S/N than HD 209458 b

Phase Curves

- Ups And b w/ Spitzer MIPS
- Non-transiting planet
- 5 epochs around orbit
- Big variation!
- ...but a
reanalysis by
Crossfield found a new
systematic
- Hot spot moved from star-facing to near limb

Phase Curves

- HD 189733b
- IRAC $8 \mu \mathrm{~m}$
- Small variation
- Temperature more homogenized
- $24 \mu \mathrm{~m}$ MIPS
- Also GJ 436b, HD 149026b, many others

Knutson et al. (2007, Nature)

Dayside Mapping

- Use different eclipse ingress and egress angles to map dayside flux
- Done historically for binary stars, Pluto/Charon, galactic center, etc.

Dayside Mapping

Majeau et al. 2012 and de Wit et al. 2012 did for HD 189733b at $8 \mu \mathrm{~m}$

- Spitzer programs to map eccentric planets
- With different wavelengths, could do 3D T(p), 2D composition maps. Holy Grail!
- Proposing for Spitzer, JWST will clean up!

TRAPPIST-1 Habitable(?) Planets

- 2 planets found in survey
- 5 more found by Spitzer
- "Habitable zone"
- Earth-sized (0.76-1.13 Re)
- Small M-dwarf star
- Gillon+17, Nature

Spitzer Exoplanet Science

- matures and extreme planets
- 3000-3500+K (WASP-12b, 33b)
- ~1000- K (GJ 436b, WASP-8b, W11-HAT-P-10b)
- Hot spots become central+hot with high temp., circulation breaks down (Perez-Becker and Showman 2013)
- Orbital eccentricity from eclipse timing
- Odd chemistry
- Disequilibrium, GJ 436b (?)
- C/O > 1, WASP-12b? (Madhu vs. Line battle)
- Inversions? ...or not... (Knutson first, then many, now fights)
- Attempts at population stats (us, Cowan, nothing clear)

Phase Curve Hot Spots

- Cooler planets: Fast winds blow heat to night side
- Shallow phase curve
- Hot spot toward limb
- Hotter planets: Radiation beats advection
- Winds cool before reaching night side
- Circulation breaks down
- Deeper PC, central hot spot

Measuring Atmospheres

A planet's spectrum tells its story. Take Mars:

Broadband "Spectra"

- Knutson et al. (2008, ApJ)
- HD 209458b
- Spitzer 3.6, 4.5, 5.8, 8

- In eclipse (dayside emission)
- Inversion...but...
- $\mathrm{H}_{2} \mathrm{O}$ evidence

Detrending WASP-12b

Campo+11

Pixel-Phase Effect

WASP-12b

Exoplanet WASP-12b
NASA / JPL-Caltech / N. Madhusudhan (Princeton University]
Spitzer Space Telescope • IRAC

WASP-12b

Atmospheric Constraints

- MCMC tells what questions data can answer
- For WASP-12b, C/O > 1 jumps out
- Watch for BART, our open-source version!

WASP-12b

- One of the best, S/N-wise
- 4 Spitzer + 3 ground-based ecl.
- Strong detections in all channels
- LOTS of carbon! $\mathrm{C} / \mathrm{O}>1$!
- First "carbon-rich" planet
- Might have diamond in its core
- Madhusudhan+2011, Nature
- Campo+2011, ApJ
- Line+2013, ApJ - normal C/O, lots of CO_{2}
- Stevenson+2014, ApJ - C/O > 1
- HST data equivocal: can hide O in $\mathrm{H}_{2} \mathrm{O}$,

- Not well constrained by data

Eclipse-Depth Wars

- Eclipse depths depend on systematics method
- Polynomial (early) intrapixel methods inconsistent
- Independent pixel-mapping analyses agree
- BiLnearly Interpolated Subpixel Sampling (Stevenson+12)
- Kernel density estimator (Ballard+11/Lewis)
- Pixel-Level Decorrelation (Deming+15) may differ for weak/red-noisy signals
- Insufficient tests for new stats methods
- Overconfidence in new/aribtrary methods that produce pretty results

IRAC Data Challenge

- Spitzer created dataset using their best model
- Analyzed by 5 groups
- 2 Groups agreed and got right answer
- Both used pixel mappers, MCMC
- Rest (3 others) omitted or approximated systematics
- They missed the eclipse depth
- Some also got very incorrect error bars

UCF's POET Pipeline

- Photometry for Orbits, Eclipses, and Transits
- Try all methods, evaluate analyses statistically
- Invented BLISS (Stevenson+12)
- Implemented PLD (Deming+15)
- Not scattershot! Ask right statistical questions
- Example: Select best aperture by SDNR, but select best ramp/intrapixel by BIC
- If several analyses have similar BIC, solution encompasses them
- With up to 20 apertures and ~ 12 ramps, can do many dozens of analyses per eclipse

Search for Life?

- Public really wants exolife \& exo-Earth-like planets Are we lonely?
- Astronomers have been selling them life for 400 years!
- Maybe we should deliver?
- Search for life motivates all exploration plans
- Planetary science piggybacks on that
- Works out well for us...

New Kepler Planet Candidates
 As of June 2017

Community Lessons

- Exoplanets pushed Spitzer past its design
- Earth-sized exoplanets (etc.) will push JWST
- Start high-end analysis workshops now (done!)
- Fund and publicize community efforts to understand systematics (done!)
- Respond to consensus requests for changes
- Publish best practices for referees, editors, program managers
- Agency restraint in press releases!
- S/N < 10? "Indication", "Requiring verification"

Conclusions

- Spitzer broke out the combined-light exoplanet landscape
- Eclipses, broadband spectroscopy, phase curves, dayside mapping, M-dwarf "Earths"
- Winds decrease with temp., T contrast rises
- Rigor in analyses critical, often missing
- Risk of nasty PR gaffe with JWST
- Standards Leadership Needed!
- Workshops, special issues on systematics
- Educate researchers, reviewers, editors, managers
- Specific requirements for low-S/N PR claims

Spitzer Analysis Checklist

- Just because model fits does not mean it's right
- Eclipses require 10^{-4} accuracy!
- Worry about $2^{\text {nd }}-\& 3^{\text {rd }}-$ order effects
- Observe 3 hours before, 2 after
- Try many apertures, centering methods
- Use subpixel photometry
- Try many intrapixel and ramp functions
- Run variations in all reasonable combinations
- Use SDNR, BIC, AIC to choose best, report ties
- ...or use Gaussian processes, marginalize models
- Atmos: Report $T(p)$ and contribution functions

MCMC Checklist

- Find the minimum with a minimizer
- Rescale errors after $1^{\text {st }}$ good fit, Spitzer's high
- Test RMS error vs. bin size (red noise)
- DO NOT report peak/median of each parameter distribution as best joint solution!
- If MCMC ever finds better χ^{2}, reminimize from there and restart MCMC
- Assess errors \& correlations with MCMC
- Gelman-Rubin test for MCMC convergence
- Inspect traces, histograms, correlation plots

