Broadband Near-infrared Spectroscopy for Core-collapse Supernova Nucleosynthesis

Dae-Sik Moon University of Toronto

DSC_7624.JPG 2003/09/29 11:58:57.9

Photo Credit: George Gull

Broadband Near-infrared Spectroscopy for Core-collapse Supernova Nucleosynthesis

Triplespec 2007 Jan at Cornell

(The most complete Triplespec photo that I personally own.)

NIRES (= Keck version of Triplespec) in 2017 March. Now at Keck II.

Six indispensable elements for human body

Six indispensable elements for human body

CHNOPS in...

Homo sapiens' atomic composition

Production rate of P (Phosphorus) has not been measured in supernova explosions.

Triplespec Spectroscopy of Cassiopeia A

P, S, O, He, Fe, H
have transitions in J
band around 1 micron
6 slit positions along
its [Fe II] shell
(≈ 30 minute exposure
time in total)

Cassiopeia A (~330 yrs old, Type IIb core-collapse supernova)

"Detection of Phosphorus"

P (Phosphorus): neutron capture on Si in hydrostatic Ne-burning shells in the pre-SN stage and also in explosive C and Ne burning layers.

(Koo, Lee, Moon et al. 2013, Science)

"Detection of Phosphorus"

Good correlation between high-velocity S and P.

Triplespec Spectrum of Young Core-collapse Supernova Remnant

Triplespec Spectrum of Young Core-collapse Supernova Remnant: Highly Blue-shifted Ejecta of Fe & He

Si burning in explosive supernova nucleosynthesis ²⁸Si + ⁴He \leftrightarrow ³²S + γ ; ³²S + ⁴He \leftrightarrow ³⁶Ar + γ ; ³⁶Ar + ⁴He \leftrightarrow ⁴⁰Ca + γ ; ⁴⁰Ca + ⁴He \leftrightarrow ⁴⁴Ti + γ ; ⁴⁴Ti + ⁴He \leftrightarrow ⁴⁸Cr + γ ; ⁴⁸Cr + ⁴He \leftrightarrow ⁵²Fe + γ ; ⁵²Fe + ⁴He \leftrightarrow ⁵⁶Ni + γ ; ⁵⁶Ni + ⁴He \leftrightarrow ⁶⁰Zn + γ Mediated by α particles

" α -rich freezeout": Incomplete Si burning gives "freezeout" leftover α particles.

(Moon et al. 2017)

We need an integral-field near-infrared spectrometer with a large FoV for spectral mapping of extended objects.

Development & Commissioning of Wide Integral Field Infrared Spectrograph (WIFIS)

Development & Commissioning of Wide Integral Field Infrared Spectrograph (WIFIS)

Image slicer: 55"×22" integral field on Bok 2.3-m telescope (or 12"×5" on GTC)

WIFIS at U.Toronto Lab

WIFIS Commissioned (2017 May)

Development & Commissioning of Wide Integral Field Infrared Spectrograph (WIFIS)

WIFIS commissioning sample data of a planetary nebula.

WIFIS Near-Infrared Spectral Mapping of the Entire Shell of Cassiopeia A

Completed in 2017 June with 13 WIFIS pointings and data are being analyzed.

Sky-subtracted Sample Raw Data of WIFIS Cassiopeia A Observations

Spatial Direction (18 slices)

Broadband and Wide Integral Field Infrared Spectroscopy (especially zJ band) is an excellent tool for studying nucleosynthesis of core-collapse supernovae. Broadband and Wide Integral Field Infrared Spectroscopy (especially zJ band) is an excellent tool for studying nucleosynthesis of core-collapse supernovae.

More importantly, it's great to see you all here!