Direct Detection sub-mm Spectroscopy of Galaxies in the Early Universe

Amit Vishwas June 27, 2017

> Science Enabled by Novel Infrared Instrumentation

Outline of the talk

I. Far-IR line emission - Unique probes of the ISM

2. Instrumentation: Overview of ZEUS-2

ZEUS-2 Survey of [OII] / [NII] at z ~ 2 -

cience Enabled by Novel Infrared

Galaxy Evolution over Cosmic Time

Continuous Accretion from Halo and Disk Instabilities

cience Enabled by Novel Infrared

Galaxy Evolution over Cosmic Time

z = 4, ~2kpc disks

cience Enabled by Novel Infrared

0, >30 kpc Galaxies

Dusty Star Forming galaxies

Contribute Significantly to Cosmic Star Formation

cience Enabled by Novel Infrared

Dusty Star Forming galaxies

Contribute Significantly to Cosmic Star Formation

The Star Formation activity is almost completely obscured

Science Enabled by Novel Infrared

Rare beasts!

e

~10⁵ candidates at z>1

dis

Are rare and shortlived

 Valuable insights to some of the most vital/violent processes for galaxy evolution

cience Enabled by Novel Infrared

Star-formation studies of high-z Galaxies

...should lead to some understanding of the following quantities:

Temperature

Density Star formation Rate Gas Mass Radiation Field Metallicity

Star-formation studies of high-z Galaxies with Redshifted for IR Line Emission

Far-IR probes of Star-formation

density of late O/early B stars in ISM

Far more can be learned by taking advantage of the other FIR finestructure lines

Neutral gas lines: [OI] 63 and 145 µm FUX 6 to 13.6 e decouples density dependence

Ionized gas lines:

 [NII] 205 and 122 μm:
 14,5 to 28 eV
 Trace UV field,

 [NIII] 57 μm:
 28 to 47 eV
 Density &

 [OIII] 88 and 52 μm:
 35 to 54 eV
 Abundances

Combination of above lines: Allows us to trace stellar populations gas properties, C/N/O abundances, SF clock

> Science Enabled by Novel Infrared Instrumentation

ZEUS-2 : The 2nd generation Redshift (z) & Early Universe Spectrometer

Dry Cryostat: Pulse-tube cooler and two-stage ADR

Large focal plane with an optimized echelle grating

5-10 spatial beams on sky, R ~ 800-1300

3 TES Bolometer arrays : 215, 400 & 645 µm

• (9x22, 8x35, 5x11 pixels) @ 120 mK

• 28:1 SQUID multiplexers from NIST.

 Hands-on training for grad students and >20 undergraduates in sub-mm instrumentation

ience Enabled by Novel Infrared

ZEUS-2 Optics

Multi color, multi beam, large FoV with compact optics

Blazed-ruled grating operating between 2nd and 9th order

 Diffraction limited Entrance slit at 400 µm to minimize background

ZEUS-2 focal plane Sandwich

350/450 pm Back-illuminated Array with 10 readout columns

Back Half: Front-illuminated 15/645 μm arrays

cience Enabled by Novel Infrared

Fully populated ZEUS-2 focal plane

Science Enabled by Novel Infrared

The Atacama Pathfinder Experiment (APEX) Telescope

- Llano de Chajnantor, Chile
 - At 5100 mts altitude
- One of the best sub-mm sites on Earth
 - Best PWV ~ 0.2mm, Median PWV ~ 1mm
- Modified ALMA antenna, 12 meters
 - Surface accuracy ~ 17 μm
 - (surface being upgraded later this year)

cience Enabled by Novel Infrared

at APEX

Redshift(z) & Early Universe Spectrometer

ation

Science Enabled by Novel Infrared Instrumentation

ZEUS-2 at APEX

ZEUS-2 on APEX offers a very sensitive ground based platform for spectroscopy other wise only possible using airborne or space based observatories

4-successful observing runs to date (2012, 14-16)

Early Universe: Far-IR probes of starformation
Survey of [CII], [OI] [OIII], [NII]
lines from z ~ 1 - 5

Local Universe: Map multiple spectral lines

• Studies of the ionized, atomic and molecular phases of MW & nearby galaxies: [NII], mid-J CO, [CI]

cience Enabled by Novel Infrared

Lility of Oxygen

- Comparing [OIII]/[NII]
 - Ionization state of the medium
 - Hardness of the UV field
- NLR: UV Hardness varies little with power law index.
 OIII/NII: ratio of ionizing photons to hydrogen nuclei. (Ionization Parameter)
- In Stellar Hil Regions: Measures the effective Temperature of the Stars
 - Constrains Spectral Type, Starburst age & # such stars

Science Enabled by Novel Infrared Instrumentation

Ionization Parameter (log U)

Science Enabled by Novel Infrared Instrumentation

ZEUS/ZEUS2 Survey of [OIII]/[NII]

reported by Ferkinhoff et al. 2010, 2011 using ZEUS on CSO

We are continuing this survey of ionized far-IR lines to probe stellar populations in the early Universe with ZEUS-2.

- 6 (1) Tentative high-z [OIII] (NII 122) detections
- 2 upper limits (~10⁻¹⁸ W/m², few × 10¹⁰ L
- Literature high-z [OIII]: (1 Herschel/SPIRE, 3 ALMA z>7)

cience Enabled by Novel Infrared

ZEUS/ZEUS2 Survey of [OIII]/[NII]

reported by Ferkinhoff et al. 2010, 2011 using ZEUS on CSO

We are continuing this survey of ionized far-IR lines to probe stellar populations in the early Universe with ZEUS-2.

- 6 (1) Tentative high-z [OIII] (NII 122) detections
- 2 upper limits (~10⁻¹⁸ W/m², few × 10¹⁰ L
- Literature high-z [OIII]: (1 Herschel/SPIRE, 3 ALMA z>7)

cience Enabled by Novel Infrared

ZEUS/ZEUS-2 [OIII] Survey at z~2.8-4.6

ZEUS/ZEUS-2 [OIII] Survey at $z \sim 2.8-4.6$

 $Log(L_{FIR}/10^{13}L_{\odot})$

[OIII]/FIR : EoR **MA Results** SXDG-NB1006-2 z=7.21 **C3** Inoue+16 **OIII]/FIR (%)** z=7.1 A27744-YD4 0.1 z=8.38 Laporte+17 BDF3299 Clumpz=7.11 .01 ______ 10⁻⁷ Carniani+17 10⁻⁵ 10⁻⁶ 10^{-4}

[OIII]/FIR : Compared to Local Sample

(ISO, Red *) Brauher 08

(HERUS, Orange □ Farrah+13

(SHINING, Red □) Gracia-Carpio+1

 (DGS, O, \star) Cormier+15

[OIII]/FIR : Depared to Local Sample

[OIII]/FIR (%)

(SHINING, Red C Gracia-Carpio+1

(HERUS, Orange

 (DGS, O, \star) Cormier+15

(ISO, Red *)

Brauher 08

Farrah+13

Reminded me of Compared to

Stacey+10 Hailey-Dunsheath+ 10 Ferkinhoff+ 14, Brisbin+15

Mapping ZEUS sources

Any line detected with ZEUS-2 can be mapped with ALMA across 40 beams
Continuum sizes can be misleading
Some sources are gravitationally lensed – enabling sampling of a broader range for intrinsic L_R

8 ALMA Cv3/4 programs, over 30 hours. VLA program, ZINGRS!

Effective Stellar Temperature (K)

40000

45000

50000

(arcsec

Declination

ICRS

Relative

 10^{4}

/ F([NII]205)

F([0111]88)

10⁻² _____ 30000 \otimes

n=2 n=3

SPT0418-47

35000

ZEUS-2/APEX : Line detectability

NICE

ZEUS-2/APEX : Line detectability

