Mid-IR Spectroscopy on the ELT with METIS

Bernhard Brandl, 28 June 2017

I. METIS and the ELT II. Instrument Concept III. Science IV.Challenges and Opportunities

05/04/2016

I. METIS and the ELT

5

METIS

METIS = Mid-infrared ELT Imager and Spectrograph

The only 1st-generation thermal/mid-IR instrument on any ELT

Imaging at 3 – 13 (19)μm. The imager includes

- Iow/medium resolution slit spectroscopy
- coronagraphy for high contrast imaging
- High resolution (R ~ 100,000) IFU spectroscopy at 3 5 μm, including
 - a mode with extended (~300nm) instantaneous wavelength coverage.
- All observing modes work at the diffraction limit with single conjugate adaptive optics (SCAO) and eventually assisted by a LTAO system.

• Partners: 9 institutes from 8 countries

II. Instrument Concept

5

METIS

Optical Overview

METIS

ωετis (SC)AO Performance

Μετίs Coronagraphic Concept

Four planes are available within the METIS fore-optics for focal plane and pupil plane coronagraphs.

Detectors

Subsystem	Туре	Pixels
AO WFS (NIR)	Leonardo SAPHIRA	320 × 256
L/M band imaging	Teledyne HAWAII-2 RG	2048 × 2048
L/M IFU spectroscopy	Teledyne HAWAII-2 RG	4 × 2048 × 2048
N/Q band imaging <u>or</u>	Raytheon AQUARIUS	1024×1024
N band imaging	Teledyne Geosnap	2048 × 2048
N IFU spectroscopy	Raytheon AQUARIUS	2 × 1024 × 1024

λετis 2.9-5.3 μm Spectrograph

Pre-disperser

- produces a low resolution spectrum at slit mask for order sorting.
- double-pass monochromator design
- ZnSe prism used in reflection.

- all-reflective TMA design in double pass
- disperser: immersed Si echelle grating
- R > 100,000 for $\lambda \le 4.8 \mu m$

500 mm

III. Science

METIS

5

Μετίs Wide Range of IR Science

Μετίς Imaging nearby Exoplanets

17

Best targets for E-ELT / METIS in L' (3.8 micron)

λετίς Earth @ Alpha Centauri

What would a habitable Earth around Alpha Centauri look like?

Μετίs Exoplanet Atmospheres

ΜΕΤΙ Spectral Imaging of Proto-Planets

- broad line emission (←accretion) from the circum-planetary disk
- proto-planet clearly separated from the cooler circum-stellar disk

Μετίς SSCs in Galaxy Mergers

- Simulation of merger @ N-band by Renaud et al. (2014)
- Left: D (20 Mpc) and total F_v (2 Jy) of the Antennae galaxies
- <u>Right</u>: object moved to D = 220 Mpc (z = 0.05)

IV. Challenges & Opportunities

5

METIS

Development of Novel Components

ΜΕΤΙS Challenge: Alignment & Control

2e+04 mm

- co-alignment of 5 pupils (2 EELT + 3 instr.)
- gravitational sagging + vibrations
- active alignment & control \rightarrow 90% SR

Reaching the photon shot-noise limit in the thermal IR on the E-ELT is arguably the biggest challenge for METIS

С

ALT

Calibration schemes:

JETIS

- Classical chopping/nodding
- Novel chopping strategies
- Drift scanning
- etc.

Background Calibration

Breakthrough Initiative

- In July 2015, Milner launched the Breakthrough Initiatives:
 - Breakthrough Listen

JETIS

- Breakthrough Message
- Breakthrough Starshot
- Breakthrough Watch

https://breakthroughinitiatives.org/Instruments/4

The developments for VISIR will also be beneficial for the future <u>METIS</u> instrument, to be mounted on the European Extremely Large Telescope (E-ELT), which is now under construction in Chile. The knowledge gained and proof-of-concept developed with the VISIR instrument will be directly transferable to the new telescope, due to see first light in 2024. The huge size of the E-ELT should allow METIS to detect and study exoplanets the size of Mars orbiting Alpha Centauri, if they exist, as well as other potentially habitable planets around other nearby stars.

Μετίs Proxima Cen b @ 9.6μm

<u>Upper left:</u> the spectral features in the atmospheres of Earth, Venus and Mars. The ozone absorption at 9.6 μ m is very pronounced in the Earth's spectrum. <u>Lower left:</u> Zoom into the spectral window around the ozone feature. <u>Lower right:</u> The complexity of the absorption bands demonstrates the need for high spectral resolution. The spectrum is shown at the METIS resolution of R ~ 100,000.

27

JETIS Ozone in Proxima Cen b

Although the Earth's atmosphere shows a similar ozone absorption spectrum than Proxima Cen b, the two can be distinguished by Doppler shift.

Ozone signal after three nights of METIS@E-ELT observations [TBC]. The cross-correlation with the ozone template spectrum was performed over a wavelength range of 9.4 – 9.8µm.

2025

Surface of Exoplanet Proxima Cen b (artist conception)